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Abstract 

Large-scale assessment programs are increasingly including complex performance assessments 
along with traditional multiple-choice items in a given test.  These performance assessments are 
developed in part to measure sets of skills that are part of the trait to be measured, but are not 
easily assessed with multiple choice items.  One approach to creating and score these items is to 
create a set of tasks within a scenario that can be objectively scored using set of scoring rules to 
yield dichotomous responses.  Including complex performance items introduces two potential 
problems. First, the performance items are developed to measure something distinctly different 
from the multiple-choice items, and may introduce some degree of multidimensionality into the 
test.  Second, as the set of scoring rules or “measurement opportunities” stem from common 
stimuli and are scored with a set of elaborate rule, contextual and scoring dependencies are likely 
to arise.  Both multidimensionality and statistical dependencies may create a situation where 
non-zero residual covariances are present.  In turn, non-zero residual covariances—which violate 
tenets of both classical test and item response theories—can have potentially serious 
psychometric impact. 

This study uses real test data to explore the nature and magnitudes of the conditional and residual 
covariance structures between and among the measurement opportunities of complex 
performance assessments.  Residual covariances are assessed under three different methods for 
scoring and scaling the simulations. The results indicate that polytomously scoring the 
measurement opportunities in may be effective in controlling some of the extreme dependencies 
due to scoring or contextual factors, but changing only the scoring methods does little to reduce 
the overall amount of conditional covariance among the measurement opportunities.  Treating 
the performance items and multiple choice items as two separate and distinct scales, after 
polytomous scoring was applied proved most effective in control the magnitude of residual 
covariance. 

 

Introduction 

This research explores options for scoring and scaling the complex performance assessments 
items in place as part of a large-scale certification examination.  This exam consists of four 
sections, each delivered in a computerized adaptive multistage test (ca-MST; Luecht & 
Nungester, 1998; Luecht, 2000; Luecht, Brumfield, and Breithaupt, 2006) design1

                                                 
1  The ca-MST structure is only used for the MCQ section.  Regardless of ca-MST pathway, candidates receiving the 
same set of testlets receive the same two simulation items  

.  This design 
uses an adaptive algorithm to match, sequentially, the difficulty of testlets to the apparent 
proficiency of the examinees.  The collection of ca-MST testlets available for adaptive 
administration to any given examinee is called a "panel".  Panels for all four sections include 
multiple-choice questions (MCQs), and three of the four sections include two “simulations” 
items—performance assessments that are designed to assess the on the skills (e.g. analysis, 
research, communication skills, etc.) required to be successful in the workplace.  The intent of 
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adding such task is to improve test validity by measuring skills that are required for success in 
the field. 

Boolean rules are applied to examinees’ responses as a means of scoring simulations. For 
example, a Boolean rule may relate a free-response entry in a spreadsheet cell to a stored answer, 
requiring that the entry be within a prescribed tolerance of the anticipated answer.  Each 
simulation has multiple possible responses opportunities termed "measurement opportunities" 
(MO).  The current approach to scoring the MOs is to treat each as an independent "item".  The 
MCQ items are calibrated using the three parameter logistic model, and the resulting item 
parameters then serve as a set of anchoring parameters for calibrating the MCQ and simulation 
MOs using the same unidimensional IRT model. 

Using a unidimensional IRT model for the purposes of calibrating the MCQ responses and the 
simulation MOs poses two potential challenges.  First, the simulations, explicitly seeking to 
measure procedural and problem-solving skills that go beyond the declarative knowledge 
assessed by the MCQs, raises the possibility that the scored MOs will in fact constitutes a 
different scale than measured by the longer and more stable MCQ section.  Second, because 
multiple MOs are associated with a common scenario and because scoring rules may share 
"scorable objects" and further allow explicit relations among the rules, it is likely that many 
complicated statistical dependencies are present. While the simulations are initially added to 
improve the relationship of the test to the underlying construct, the local item dependency and 
dimensionality that may be introduced call into the question the appropriateness of  the scores 
produced.  Significant item dependency and dimensionality have practical ramifications as well; 
directly affecting the estimation of test reliability, estimation of item and ability parameters, 
estimation of test information, equating processes, and DIF detection.  

Defining Local Item Dependency 

Local independence of item responses is a notion that appears in numerous forms in test theory.  
In classical test theory, it is assumed that the errors of measurement are uncorrelated given the 
true score of an examinee.  In item response theory (IRT), a pair of items is considered locally 
independent in item response theory if, after conditioning on the examinee’s proficiency on the 
measured trait, the joint probability distribution of any two items is equal to the product of the 
marginal probability distributions (see equation 1). A set of item responses is locally independent 
when the joint distribution of all item responses is the product of each individual item’s response 
distribution. 
 ( ) ( ) ( )1 1 2 2 1 1 2 2,P X x X x P X x P X xθ θ θ= = = = =  (1) 

If Equation 1 holds, the trait proficiency (θ) accounts for all of the information relevant for each 
examinee, thus allowing the items to be evaluated independently (Yen 1984).  This is a 
fundamental assumption in using any unidimensional IRT model.  This idea is easily expressed 
in terms of conditional covariance as well. If items Xi and Xj  are locally independent they will 
have a covariance of zero, after conditioning on some ability θ.   



 

5 

 

A definition of local item dependence (LID) follows logically from the definition above—the 
presence of conditional covariance between a set of items.  That is,  

Cov(Xi,Xj|θ) = E(xi,xj|θ) ≠  0, for i≠ j.      (2) 

Conditional covariance in either a positive or negative direction indicates that performance on 
one item is related to the expected performance of the examinees on the other item.  This can 
also be put in factor analytic terms: LID is present if, after extracting the first factor (roughly 
equivalent to conditioning on the trait of primary interest θ), there is a non-zero residual 
covariance between some items. These non-zero covariance indicate that there may be one or 
more additional factors that explain the remaining variance (Yen 1993).  The additional factors 
are the potential sources of LID and may or may not be vital to the trait or behavior that is being 
measured.   

Sources of Local Item Dependencies 

For the purposes of this study the sources of LID are classified into three categories: contextual, 
scoring, and dimensional.  Items that share contextual circumstances may be related to one 
another in ways that the primary ability or proficiency of interest cannot be explained.  Many 
dependency studies focus on passages or performance assessments that have an associated 
cluster of items, resulting in responses showing varying levels of dependencies (Sireci et al, 
1991; Yen, 1993; Ferrara et al, 1997; Yan, 1997; Ferrara, Huynh, & Michaels 1999; Zenisky, 
Hambleton, & Sireci, 2002).  This same thinking can be extended to items that share a common 
setting, stimuli, set of directions, or set of resources.   

That choice item-level scoring procedure, particularly on performance items, can also lead to 
LID between items.  Scoring rules that share objects, (i.e. awarding credit in more than one place 
for a correct response on a particular item), can also lead to dependencies due to scoring.   
Similarly, the presence of item chains—a series of items where answers depend directly on the 
responses given previously (i.e. an item requires an explanation of the previous response or the 
various steps in solving problem are each graded separately).  Both scoring and contextual 
dependencies can be considered to be “nuisance factors”—that is, they are factors that do not 
have direct implications on the trait or skill being measured, but can have adverse effects on the 
properties of the scores or equating if ignored.   

If more than one skill or trait is required to successfully explain an examinee’s response, a test 
can be considered to have some degree of multidimensionality. LID is an indicator that multiple 
proficiency traits may be underlying the collective response patterns for a set of items on a test.  
If the relative magnitude of the multidimensionality is large, the residual covariance cannot be 
considered as ignorably due to nuisance factors.  Ultimately, additional dimensionally relevant 
score scales may be needed, if the practitioner decides that the skills they represent are essential 
to the measurement purposes of the test.   
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Consequences of Ignoring Local Item Dependencies  

Ignoring LID, regardless of its cause, is known to affect the psychometric properties of tests.  For 
example, if we assume that a unidimensional IRT model fits the data, but then encounter 
response patterns that violate the assumption that items are conditionally independent, we will 
tend to overestimate properties such as the test information and reliability while underestimating 
the standard errors of the ability estimates (Sireci et al, 1991; Wainer & Thissen 1996, Yen 
1993).  Reese (1995) describes the underestimation of low score and the overestimation of high 
scores in sets of items that exhibit LID.  Further, the presence of LID is known to affect the 
estimation and accuracy of item parameters.  Wainer and Wang (2002) found that lower 
asymptotes were overestimated when dependencies were ignored between testlets.  Ackerman 
(1987) found that item discriminations were overestimated when set of items were locally 
dependent.   When items are to be banked for use in creating parallel forms or to be delivered 
adaptively, inaccurate item parameter estimates can call the fairness of the test into question 
(Thompson and Pommerich,1996). If residual covariances differ for various population 
subgroups, differential item functioning (DIF) results.  Finally, test scaling and equating 
practices—which rely on accurate parameter estimates—can be adversely affected by LID 
(Reese and Pashley, 1999; DeChamplain, 1996). 

Strategies for Addressing Local Item Dependencies 

In situations where LID is present, or likely to be present, due to contextual and/or scoring 
concerns, certain courses of action are advisable to reduce the effects and magnitude of LID.  
The most common solution is to form “testlets” from the sets of related items—effectively 
creating a single “super” polytomous item from the cluster by summing the individual scored 
objects.  The resulting testlet-based super item can then be scaled using an IRT model for 
polytomous data.   Polytomous scoring of testlets has been demonstrated as effective in reducing 
LID (Yen, 1993; Stark, Chernyshenko, & Drasgow, 2004; Sireci et al. 1991; Zenisky, 
Hambleton, & Sireci, 2002). However creating polytomous items from unrelated subsets of items 
has been shown to decrease reliability and test information (Yen, 1993). If a test has several 
related sets of items, (i.e. several reading passages with related clusters), then this method is 
most effective if the created polytomous items can be created so that local independence is 
maintained across all the newly created set of polytomous items.   

A course of action is less clear when a test exhibits apparent multidimensionality.  The simplest 
and perhaps most common practice is to continue to assume that the mixture of multiple 
dimensions forms an essentially unidimensional measure. In that case, the resulting total-test 
ability estimate can be shown to represent a weighted composite of some unknown number of 
traits. If the extent of multidimensionality is small and unrelated to specific features of the items 
or content of the test, this solution may be reasonable. The composite ability estimate is 
effectively weighted according to the relative number of items linked to each trait and the 
average information exhibited by those items. However, as the magnitude of multidimensionality 
increases, the projection of any ancillary dimensions onto a single reference composite can alter 
the nature of the total-test composite in unpredictable ways. 
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Another approach to dealing with multidimensionality can also be employed: scaling the sets of 
items assumed to represent different traits or skills sets separately.  This approach allows 
separate score for each scale/dimension to be reported and, ideally, ability estimates that 
adequately explain the responses to related set of items. Again, this course of action is not 
without practical consequences. Breaking the complete set of test items into separate tests will 
results in smaller tests.  Smaller tests, in turn, yield less reliable scores, and less reliable scores 
may adversely affect the quality of the ability estimates, themselves.  Statistical augmentation 
can be used to improve the reliability of the multidimensional estimates, but not without 
regression bias to (e.g., Finally, creating an appropriate and stable total-test, composite score (if 
one is needed) can become a tedious procedure from an equating perspective.  

More complex scaling methods are also available when a test is likely multidimensional.  A great 
number of multidimensional IRT (MIRT) models allow for multiple abilities to be jointly 
estimated, describe the relationship between set of traits, and allow for factorial complex 
structures within the test.  These scaling methods are more computationally complex, require 
much larger sample sizes, and software packages to fit the models to data tend to be limited.  
Technical statistical issues such as rotational indeterminacy also remain largely unresolved for 
MIRT models. 

Lastly, dealing with LID is complicated by an intractable confounding of the interactions 
between subsets of examinees from the population and subtle or not-so-subtle characteristics of 
the assessment tasks.  Simple statistical methods can help test for the presence of LID. However, 
conclusively determining the source or sources of LID is not straightforward.  For example, it is 
becoming more common to include complex performance assessment on many types of tests, 
ranging from certification examinations to educational assessments. These items are typically 
developed to measure analytical, problem-solving, evaluative and communication skills that are 
difficult to measure in tradition MCQ questions. Whether these skills align with content to form 
a ordered continuum is open to empirical investigation.  Members of the populations may also 
differ in their opportunities to learn these new skills. Once items are written for a particular 
performance assessment, there are additional interactions that may involve prior knowledge for 
some groups with common contexts or stimuli used to link the items or MOs together.  In 
addition, the items may be scored with complex scoring rules having various implicit or explicit 
associations among the components used in scoring and those features of how those components 
are learned may differ for various population subgroups.  In short, our capability to detect LID 
probably surpasses our ability to understand it. 

Research Questions 

The current study examines the effects that scoring methods and scaling procedure have on the 
residual covariance structures (indicators of the statistical dependencies due to context/scoring 
and/or dimensionality) of certification test that includes simulations-based performance 
assessments.  Three different sets of conditional covariance will be compared; the relationships 
of MOs within a single simulations, relationships between MOs on the two different simulation 
within a single panel, and the relationships between the simulation MOs and the MCQ items.  
The residual covariances of item pairs are assessed in terms of their magnitude and their 
direction.  In any of the three comparisons above, significant negative (divergent) covariance 
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provides evidence that the items may be measuring different traits.  Positive (convergent) 
covariance between two items may indicate that contextual or scoring associations are leading to 
dependencies (this is only possible on within simulation comparisons as only those items share 
scoring rules and contextual settings). Positive covariance is also evidence that the item pair may 
be associated with some other trait not represented in the assessment.  

As mentioned above, clustering related items into sets and forming polytomous items from these 
sets is one potential way to control the amount of LID due to a common context or scoring rules. 
In the context of this study, the MOs within a single simulation could be scored in their 
dichotomous state or grouped to form “super” polytomous items.  The distribution of conditional 
covariance among the MOs within a simulation could then be compared across the different 
scoring methods.  Specifically, the study will compare three methods of scoring the simulations: 
1) leaving simulations as dichotomous simulations, 2) grouping the MOs within a single 
simulation into a smaller number of polytomous items using statistically optimal method, and 3) 
creating polytomous simulations based the cognitive properties of the MOs.  This leads to two 
separate research questions. 

1. Does breaking the simulations MOs into one or more polytomous items reduce or 
control the amounts of residual covariance between item pairs? 

2. Of the two method for creating polytomous simulation items, which controls the 
amount of residual covariance better? 

If conditional covariance is indicative of the presence of more than one scale, the scoring 
procedure mentioned above will not adequately mitigate the observed LID.  Scaling the 
simulations in using various methods will produce different ability estimates.  These estimates 
can then be used as the conditioning ability in a conditional covariance structures.  In this study, 
three IRT scaling methods (two unidimensional methods and one multidimensional approach) 
were fully crossed with the scoring MO-level methods.  IRT-based ability scores were estimated 
under each method and, in turn, were used as conditioning variables in the computation of the 
residual covariances.  The distributions and magnitudes of the resulting residual covariances 
were then compared across conditions.  This leads to a final research question: 

3. Which of the combinations of scaling methods is most successful in producing 
conditional covariance structures that meet the assumptions of local independence and 
unidimensionality used? 

Methods 

Sample 

This study uses real candidate responses from the three content-specific sections of a large-scale, 
professional certification assessment that contains both multiple-choice and complex 
performance simulation items.  From each these sections, four computer-adaptive multistage test 
(CA-MST) panels were selected at random.  This provided a means of empirically replicating the 
results across multiple test forms.  Table 1 shows the number of candidates who took each of the 
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four sampled panels, the total multiple-choice questions (MCQs) on each panel, and the number 
dichotomous measurement opportunities (MOs) associated with each of the simulations.   
Table 1:  Description of the sampled panels 

  Panel N MCQ 
Sim 1 
MOs 

Sim 2 
MOs 

Total 
MOs 

Sim 1 
Poly-
Stat 

Sim 2 
Poly-
Stat 

Total 
Poly-
Stat 

Sim1 
TBS 

Sim2 
TBS 

Total 
TBS 

Section 1 

1 316 125 28 24 52 7 7 14 4 4 8 
2 286 125 22 24 46 5 7 12 4 4 8 
3 278 125 24 21 45 6 4 10 4 4 8 
4 322 125 22 24 46 7 5 12 4 4 8 

Section 2 

1 310 125 19 15 34 3 4 7 4 3 7 
2 323 125 23 17 40 4 4 8 4 3 7 
3 314 124 13 17 30 2 2 4 2 3 5 
4 307 125 23 17 40 3 5 8 4 3 7 

Section 3 

1 321 100 36 21 57 6 4 10 5 3 8 
2 307 100 22 26 48 6 7 13 3 5 8 
3 274 100 26 23 49 5 4 9 3 3 6 
4 302 100 40 24 64 15 5 20 5 3 8 

The MOs for each simulation were scored in three ways: (1) treating each MO as unique “items”; 
(2) collapsing the MOs into “super” items and scoring each super item polytomously, based on 
statistical criteria for clustering the MOs together; and (3) combining the MOs into a testlet 
based on association of the MOs under a common user-interface control known as a “tab”.  
Additional details are provided below. 

Creation of the Polytomous Items 

One purpose of the current research is to examine how scoring polytomously might affect the 
magnitude of conditional residual covariances that are indicative of dependencies and/or 
dimensionality.  For all of the selected panels from, the dichotomous MOs are grouped into 
polytomous scores using two different methods: (1) a statistically optimal grouping and (2) “tab-
based” simulations (TBS). The term “tab-based” simulation refers to the way that the simulation 
items are presented to examinees.  Simulations are presented on single screen with a set number 
of clickable tabs across the top.  For instance, selecting the first tab might present the simulation 
scenario, the next may contain general directions, and other tabs would contain sets of tasks. 
Currently, the MOs contained within a tab may or may not be linked to the same requisite set of 
skills. In that regard, the tabs are viewed as randomly sampling over the mode of presentation.  
Under TBS scoring, however, the MOs associated with a particular tab ARE logically 
hypothesized to measure a single skill with associated content and hence should form a natural 
way of grouping the MOs.   

 To statistically group the MOs into polytomous “super” units, a tetrachoric correlation matrix 
(as the data is ordinal in nature) was created for the simulations using the dichotomous MOs 
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within each sampled panel.  A principal component analysis (PCA) was conducted on the 
tetrachoric correlations to determine the number of components (factors) to be extracted. The 
number of factors to be extracted was determined by counting the number of eigenvalues greater 
than one2

( ) ( )* *, , 0= =i j i jCov X X E x xθ θ

.  A common-factor model, with the number of factors predetermined from the PCA 
results, was then fit to the tetrachoric matrix. Finally, a Varimax rotation was applied to the 
matrix of loadings.  The rotated loading matrix was then used to perform a hierarchical cluster 
analysis (see Luecht & Miller, 1992).  The cluster analysis effectively groups together items that 
share a similar direction of maximum information in the latent factor space. The results of the 
cluster analysis were used to group MO’s into polytomous score units (PSUs).  An arbitrary 
guideline was established to allow no more than nine MOs per PSU, yielding a score range from 
0-9 (10 possible score categories).  To create the polytomous scores from the dichotomous MOs, 
the binary responses were summed within each cluster for each candidate to produce a 
polytomous score. 

 As noted above, the tab-based simulation (TBS) MOs were grouped into polytomous items by 
making use of the content-based tab assignments created by subject matter experts (SMEs) and 
test developers.  Small clusters of tasks were identified by SMEs as measuring a predetermined 
skill. Within these clusters, MO scoring was performed using Boolean rules. The TBS “super” 
items were formed by grouping together the MOs associated with the common skill and 
computing a polytomous score as the sum of the MO scores for that skill.  Although, in practice, 
the TBS MOs for each “super” item would actually be administered under the same tab, here, the 
MOs were merely linked to a tab identifier, and these identifiers used to group the MOs.  
Polytomous items that had more than ten score categories were randomly split in half to meet the 
ten-category maximum mentioned above.  For all TBS polytomous items created, categories with 
no or few candidates present were collapsed into adjacent categories. Table1 (shown earlier) also 
shows the number of simulation items created for each panel for the dichotomous MOs, the 
statistically grouped, and TBS methods.   

Creating residual covariance structures 

If the assumption of local independence holds, it can be presumed that 

       (3) 

Where x X= −µ  forall i,j item pairs, with i≠j, and θ* is any conditioning variable—usually a 
proficiency score (or vector of conditioning variables in the multidimensional case) . The 
presence of LID due to contextual and scoring or dimensional effects would cause some 
conditional covariance between item responses. One way to assess the magnitude and direction 
of LID present between items is to estimate the unconditional covariance, by integrating over the 
conditioning variable, θ*.  Yen’s Q3 statistic (1984), a standardized residual covariance statistic,  
is typically applied to the residual errors for each pair for items.  A number of studies have 

                                                 
2 Though there are better methods for determining the number factors, this method was used by the researcher so 
that the process could be automated and consistent across sampled panels 
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shown Q3 to be an effective way to describe the presence and magnitude of LID (Yen,1984; 
Yen,1993; Habing, Finch, & Roberts , 2005; Chen & Thissen, 1997).   

The residual errors were calculated with: 

 ( )ik ik ikd x E X= −  (2) 

Where xikc  is the observed score on the ith  for the kth  examinee and ( )kiE X  is the expected 
score of the kth  examinee on the ith item  given some estimate of ability (The 4 IRT score and 3 
raw-core used in conditioning are described below ).   For the dichotomous IRT conditions, 
( ) ( )ˆˆ ,ik kE x P θ= iξ  where k̂θ  is an estimated latent ability of the candidate and  ˆ

iξ  is a vector of 

item parameters.  

In the polytomous case, ( ) ( ) ( )
1

ˆˆ ˆ ˆ, 1 ,
=

= −∑
M

ik k k k
c

E X C Pθ ξ θ iξ where ( )ˆ
îc kP θ  is the probability of 

falling into the cth category, and k̂θ  is a candidate’s estimated proficiency.  Note that here any 

appropriate estimate of proficiency, k̂θ  (e.g. based on MCQ only or all items) could be used.   Q3 

is calculated as the Pearson product-moment correlation of all pairs of item residuals— 3 i jd dQ r= . 
Q3 correlations matrices were created for all panels under all three scoring methods and the 
conditioning variables below.   

A limited set of IRT-based ability estimates3

 The three unidimensional IRT scaling approaches used for obtaining the conditioning variables 
are: (1) estimating a proficiency score, θMCQ, using only the responses to the MCQ questions; (2) 
scaling using the combined, complete responses string (MCQ and simulations) with the MCQ 
item parameters from Approach #1 used as an anchor set of items (i.e., fixing the IRT parameter 
estimates, based only on MCQ calibration), and (3) scaling all of the responses together (MCQ 
and simulation MOs in a large, concurrent calibration).  The MCQ-only is the most limited 

 were used as conditioning variables in the 
computing the Q3 statistic.  The scaling methods used to produce these score were selected to 
demonstrate some very different, but operationally feasible, approaches that could be taken to 
account for residual covariance.  In theory, any score estimate or vector of score estimates (in 
multidimensional model) could be used as conditioning variable.  Three unidimensional scaling 
methods and one multidimensional scaling method were selected to produce EAP score 
estimates. All of the scaling methods were fully crossed with the three scoring conditions 
described above, producing a conditional covariance structure for each scaling method by 
scoring method combination. 

                                                 
3 Each conditioning All IRT item calibrations were performed using Hanson’s IRT Control Language (ICL) program 
(Hanson, 2002).  ICL was also used to generate EAP theta estimates for each candidate. For the IRT calibrations, 
dichotomous MCQ and simulations were scaled using the 3pl model.  Muraki’s (1992) Generalized Partial Credit 
Model (GPCM) was used to fit the polytomous simulations. 
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approach in that it ignores the simulation MOs. Nonetheless, this approach does provide a 
baseline, of sorts, for the Q3 analyses.  The anchored of the simulation to the MCQ scale 
represents the current operational scaling practices used for this testing program. In this scaling 
method, the underlying trait is still assumed that of the MCQ trait, but the responses to the 
simulation are allowed to contribute to the overall score estimation.  The last IRT unidimensional 
scaling method estimates abilities and item parameters based on a joint calibration the simulation 
and MCQ items. This type of calibration results in a composite unidimensional trait, where the 
contribution of the individual items to the score estimate are weighted by their relative influence 
or sensitivity to the underlying trait being estimated (and affected both by the number of MOs 
compared to the MCQ and the statistical discrimination of the MCQ items and simulation MOs). 

 Only one multidimensional approach to scaling/conditioning was considered.  It assumes a 
rather simple multidimensional structure for the test—a two trait model with simple structure, 
and ignoring the covariance among the traits.  To model this, each subset of items (MCQ and 
simulations) are treated as loading to two separate scales.  A unidimensional IRT calibration is 
completed for each section, and two separate Bayes expected a posteriori (EAP) abilities 
produced, corresponding to the two scales.  Expected scores for MCQ and simulation items are 
found by conditioning on the appropriate IRT score (i.e., MCQ responses were conditioned on 
the estimated θMCQ and the simulation MOs were conditioned on the estimated θSIM).  For this 
condition, a mean correlation of zero for the residuals indicates that the ability estimate produced 
by each separate scale explains the response patterns reasonably well for that particular section 
of the test. 

The Q3 indices for each scaling-scoring combination were then decomposed into four subsets for 
comparison—the residual correlations for the items composing simulation one, the residual 
correlations for the items composing simulation two4

( ) ( )ln 1 ln 1

2 2
ij ij

ij

r r
z

+ −
= −

, the correlations between the items of 
simulation one and two, and the correlations between simulation and MCQ items.  The 
minimum, maximum, and mean were recorded Q3 from these subsets as indictors of the range 
and the magnitude of dependences.   Each Q3 a matrix was also transformed to Z scores the 
Fisher r-to-z transformation (see equation 4). 

  (3) 

The distribution of ( )1
3~ 0, −ij Nz N , where N is the number of cases used to compute the 

correlation.  The transformed values were used to count the number of significant correlation 
coefficients at an alpha level of 0.05.  In addition, the number of divergent (negative) and 
convergent (positive) elements in the correlation matrix were collected and summarized. 

                                                 
4 The results for within simulation 1 and  simulation 2 were later collapsed to make overall within simulation 
comparisons 
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Results 

As the distribution of Q3 for all the panels within any given sub-examination are very similar, the 
results in the tables and figures below reflect an aggregation of all the panels within a given sub-
examination.  Tables 1-3 show the descriptive statistic retained form the analysis of each test 
section.  Each table is organized by the conditioning variable used to generate the Q3 correlation 
matrix (column labeled “Condition”), the comparison reported (dependency within any given 
simulations, between the simulation on a panel, or between the MCQ and simulations in a panel), 
and the scoring method used —dichotomous, statistically grouped polytomous (Poly Stat), or 
tab-based polytomous (Poly TBS).  The results in terms of the three research questions are 
discussed separately below. 

Effects of dichotomous and polytomous scoring Q3   

In general, the results are consistent across all sections. For the single multidimensional 
condition (the two separate scales approach), all mean Q3 correlations are negative and the 
magnitude of difference between dichotomous and polytomous scoring is relatively small.  This 
finding was an exception to the general findings (i.e., compared to the other unidimensional 
scaling conditions).  These differences are discussed in greater detail in the last part of the results 
section.  The discussion comparing scoring types that follows in this section considers all of the 
scaling conditions except two separate scales approach (the top row in figure 1-3 below).    

Tables 1-3 show clearly that the results of the Q3 analysis for each of the three sections, 
aggregated across the sampled panels within each, of the examination.   The mean Q3 value for 
polytomous scoring tends to be farther from zero than the corresponding mean Q3 value under 
dichotomous scoring.  This result is at first counterintuitive, as the purpose of adding the 
polytomous scoring condition was to reduce residual covariance ,and will be explored in greater 
detail below. For all conditions, the range of Q3 is much larger than under dichotomous scoring.  
This is particularly true in the item-pair correlations within a simulation (where contextual and 
scoring dependencies are most likely to occur). These tables also show that the residual 
covariance is primarily convergent in the within and between simulation comparisons under 
polytomous scoring.  In the dichotomous condition scoring condition, a majority of the residual 
correlations are convergent, but with a larger proportion of divergent elements when compared to 
the polytomous scoring methods.  The between simulation and MCQ comparisons (denoted 
MCQ and Sims in Tables 1-3) are similar results regardless of scoring method, with  mean Q3 
values near zero and nearly equally amount of positive and negative correlations. 

Figures 1-3 show the distributions of Q3 for the aggregated results of each section of the 
examination.  The magnitude of Q3 is plotted on the y-axis. The three columns of each of these 
figures display, respectively, the residual correlations of each pair of MOs within a single 
simulation, the residual correlations of the MOs in the two different simulations in single panel, 
and the residual correlations between all of the simulation MOs and the MCQ items in a single 
panel.  Each row represents one of the scaling methods employed.   In the within-simulation 
comparisons (column one of Figures 1-3), across all scaling methods, it is clear that polytomous 
scoring (whether statistical or tab-based) results in far fewer extreme dependencies and far fewer 
divergent correlations than dichotomous scoring. Comparing this pattern with the plots in the 
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second column (between simulation comparisons), the range of Q3 correlations is still noticeably 
smaller for polytomous scoring methods than for dichotomous scoring, with fewer extreme 
values for all three scoring methods.   

Recall that contextual and scoring dependencies arise only within a single simulation.  In the 
dichotomous scoring condition, the extreme Q3 values apparent when moving from the within- to 
between– simulation comparisons (columns one and two of the figures) are likely due to the 
contextual/scoring dependencies within a simulation.  The fact that no such extreme values 
appear in the corresponding polytomous scoring conditions in the within simulation comparisons 
is relatively strong evidence that extreme dependencies due to contextual/scoring are indeed 
mitigated by moving toward polytomous scoring. Note that forming sets of polytomous items 
based on logical, content, or other extraneous criteria, will likely not account for all contextual 
dependencies.  

Because (theoretically speaking) No contextual or scoring dependencies exist in the between-
simulation correlations (items from different simulations share no common context or scoring 
rules), it is assumed any residual covariance is largely evident of inherent multidimensionality in 
the test. The magnitude of Q3 for the between-simulation Q3 statistics is remains somewhat 
comparable to the Q3 values shown for the within-simulation conditions. Comparatively, this 
finding suggests that there is some multidimensionality present in the data—dimensionality not 
effectively explained by the unidimensional composite trait. 

Comparing TBS and Statistically Optimum Sims 

Figures 1-3 can also be used to compare the two methods of polytomous scoring.  Overall, the 
TBS and the statistically grouped simulations have very similar distributions of Q3.  Distributions 
of statistically “optimal” polytomous simulations tend to be slightly less variable than the TBS 
simulations.  Comparing the mean Q3 values for these two methods (see Tables 2-4) or the 
median values of Q3 (depicted in Figure 1-3) leads to inconclusive results; neither method of 
grouping for purposes of polytomous scoring clearly outperforms the other in terms of reducing 
the magnitude of the residual covariance.    



Table 2: Dependency Analysis Results Across Section 1 

Conditioning Comparison Scoring N 
Mean 

Q3 
Min 
Q3 

Max 
Q3 

Num 
Sig %  sig 

Num    
+ 

Num        
- 

Theta        
(MCQ) 

Within 
Simulations 

Dichotomous 2154 0.06 -0.19 0.89 493 22.89% 1587 567 

Poly (Stat) 125 0.12 -0.07 0.35 49 39.20% 111 14 

Poly (TBS) 48 0.14 -0.07 0.44 27 56.25% 46 2 

Between 
Simulations 

Dichotomous 2232 0.04 -0.17 0.57 278 12.46% 1564 668 

Poly (Stat) 143 0.11 -0.12 0.42 61 42.66% 129 14 

Poly (TBS) 64 0.15 -0.04 0.50 39 60.94% 60 4 

MCQ and Sims 
Dichotomous 23625 0.00 -0.52 0.57 5367 22.72% 12002 11623 

Poly (Stat) 6000 0.00 -0.54 0.44 1386 23.10% 2968 3032 

Poly (TBS) 4000 0.00 -0.45 0.48 925 23.13% 2000 2000 

Theta                   
(Anchored) 

Within 
Simulations 

Dichotomous 2154 0.04 -0.21 0.88 373 17.32% 1385 769 

Poly (Stat) 125 0.10 -0.08 0.36 39 31.20% 103 22 

Poly (TBS) 48 0.12 -0.08 0.43 20 41.67% 43 5 

Between 
Simulations 

Dichotomous 2232 0.01 -0.19 0.53 184 8.24% 1271 961 

Poly (Stat) 143 0.09 -0.12 0.42 49 34.27% 122 21 

Poly (TBS) 64 0.12 -0.08 0.49 28 43.75% 58 6 

MCQ and Sims 
Dichotomous 23625 -0.01 -0.53 0.54 5587 23.65% 10338 13287 

Poly (Stat) 6000 -0.01 -0.54 0.44 1433 23.88% 2769 3231 

Poly (TBS) 4000 0.00 -0.47 0.48 932 23.30% 1939 2061 

Theta    
(Unanchored) 

Within 
Simulations 

Dichotomous 2154 0.03 -0.21 0.88 332 15.41% 1312 842 

Poly (Stat) 125 0.09 -0.08 0.36 34 27.20% 100 25 

Poly (TBS) 48 0.11 -0.10 0.42 20 41.67% 41 7 

Between 
Simulations 

Dichotomous 2232 0.01 -0.19 0.51 167 7.48% 1171 1061 

Poly (Stat) 143 0.08 -0.13 0.41 42 29.37% 121 22 

Poly (TBS) 64 0.12 -0.08 0.49 26 40.63% 56 8 

MCQ and Sims 
Dichotomous 23625 -0.02 -0.53 0.53 5642 23.88% 9923 13702 

Poly (Stat) 6000 -0.02 -0.54 0.43 1474 24.57% 2454 3546 

Poly (TBS) 4000 -0.02 -0.46 0.48 997 24.93% 1654 2346 

Thetas            
(Two-scales) 

Within 
Simulations 

Dichotomous 2154 0.00 -0.26 0.81 363 16.85% 968 1186 

Poly (Stat) 125 -0.07 -0.29 0.21 40 32.00% 29 96 

Poly (TBS) 48 -0.10 -0.37 0.11 17 35.42% 6 42 

Between 
Simulations 

Dichotomous 2232 -0.02 -0.23 0.37 230 10.30% 878 1354 

Poly (Stat) 143 -0.08 -0.29 0.10 44 30.77% 27 116 

Poly (TBS) 64 -0.09 -0.30 0.35 33 51.56% 11 53 

MCQ and Sims 
Dichotomous 23625 0.00 -0.52 0.58 5178 21.92% 11977 11648 

Poly (Stat) 6000 0.00 -0.53 0.44 1321 22.02% 2996 3004 

Poly (TBS) 4000 0.00 -0.49 0.47 856 21.40% 1925 2075 
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Table 3: Dependency Analysis Results Across Section 2 

Conditioning Comparison Scoring N 
Mean 

Q3 
Min 
Q3 

Max 
Q3 

Num 
Sig % sig 

Num    
+ 

Num        
- 

Theta        
(MCQ) 

Within 
Simulations 

Dichotomous 1268 0.23 -0.14 0.95 946 74.61% 1232 36 

Poly (Stat) 36 0.24 -0.03 0.64 33 91.67% 35 1 

Poly (TBS) 48 0.14 -0.07 0.44 27 56.25% 46 2 

Between 
Simulations 

Dichotomous 1288 0.06 -0.14 0.35 351 27.25% 1043 245 

Poly (Stat) 47 0.15 -0.12 0.31 34 72.34% 42 5 

Poly (TBS) 64 0.15 -0.04 0.50 39 60.94% 60 4 

MCQ and Sims 
Dichotomous 17970 0.00 -0.29 0.34 3122 17.37% 8878 9092 

Poly (Stat) 3371 0.00 -0.26 0.29 575 17.06% 1620 1751 

Poly (TBS) 4000 0.00 -0.45 0.48 925 23.13% 2000 2000 

Theta                   
(Anchored) 

Within 
Simulations 

Dichotomous 1268 0.16 -0.23 0.94 681 53.71% 1126 142 

Poly (Stat) 36 0.21 -0.06 0.60 29 80.56% 34 2 

Poly (TBS) 48 0.12 -0.08 0.43 20 41.67% 43 5 

Between 
Simulations 

Dichotomous 1288 0.00 -0.19 0.34 140 10.87% 606 682 

Poly (Stat) 47 0.12 -0.16 0.29 26 55.32% 40 7 

Poly (TBS) 64 0.12 -0.08 0.49 28 43.75% 58 6 

MCQ and Sims 
Dichotomous 17970 -0.03 -0.38 0.27 3990 22.20% 6175 11795 

Poly (Stat) 3371 -0.01 -0.27 0.30 612 18.15% 1487 1884 

Poly (TBS) 4000 0.00 -0.47 0.48 932 23.30% 1939 2061 

Theta    
(Unanchored) 

Within 
Simulations 

Dichotomous 1268 0.12 -0.27 0.90 511 40.30% 998 270 

Poly (Stat) 36 0.26 -0.04 0.59 29 80.56% 34 2 

Poly (TBS) 31 0.27 0.01 0.80 25 80.65% 31 0 

Between 
Simulations 

Dichotomous 1288 -0.03 -0.21 0.31 177 13.74% 400 888 

Poly (Stat) 47 0.10 -0.15 0.29 25 53.19% 40 7 

Poly (TBS) 42 0.15 -0.02 0.37 28 66.67% 41 1 

MCQ and Sims 
Dichotomous 17970 -0.03 -0.38 0.28 4028 22.42% 6385 11585 

Poly (Stat) 3371 -0.02 -0.31 0.29 698 20.71% 1306 2065 

Poly (TBS) 3245 -0.02 -0.30 0.30 632 19.48% 1299 1946 

Thetas            
(Two-scales) 

Within 
Simulations 

Dichotomous 1268 0.07 -0.40 0.86 478 37.70% 760 508 

Poly (Stat) 36 -0.10 -0.61 0.46 23 63.89% 19 17 

Poly (TBS) 31 -0.04 -0.40 0.29 19 61.29% 10 21 

Between 
Simulations 

Dichotomous 1288 -0.04 -0.30 0.32 195 15.14% 337 951 

Poly (Stat) 47 -0.15 -0.36 0.05 27 57.45% 3 44 

Poly (TBS) 42 -0.14 -0.54 0.28 22 52.38% 10 32 

MCQ and Sims 
Dichotomous 17970 0.00 -0.30 0.30 2881 16.03% 9156 8814 

Poly (Stat) 3371 0.00 -0.27 0.31 511 15.16% 1674 1697 

Poly (TBS) 3245 0.00 -0.29 0.29 492 15.16% 1604 1641 
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Table 4: Dependency Analysis Results Across Section 3  

Conditioning Comparison Scoring N 
Mean 

Q3 
Min 
Q3 

Max 
Q3 

Num 
Sig %  sig 

Num    
+ 

Num        
- 

Theta        
(MCQ) 

Within 
Simulations 

Dichotomous 3030 0.20 -0.12 0.91 2058 67.92% 2837 193 

Poly (Stat) 188 0.19 0.01 0.83 173 92.02% 188 0 

Poly (TBS) 48 0.14 -0.07 0.44 27 56.25% 46 2 

Between 
Simulations 

Dichotomous 2886 0.07 -0.15 0.31 796 27.58% 2378 508 

Poly (Stat) 161 0.16 -0.06 0.44 113 70.19% 154 7 

Poly (TBS) 64 0.15 -0.04 0.50 39 60.94% 60 4 

MCQ and Sims 
Dichotomous 21800 0.00 -0.34 0.40 3570 16.38% 10552 11248 

Poly (Stat) 5200 -0.01 -0.30 0.36 898 17.27% 2444 2756 

Poly (TBS) 4000 0.00 -0.45 0.48 925 23.13% 2000 2000 

Theta                   
(Anchored) 

Within 
Simulations 

Dichotomous 3030 0.10 -0.30 0.88 1213 40.03% 2178 852 

Poly (Stat) 188 0.16 -0.05 0.77 144 76.60% 184 4 

Poly (TBS) 48 0.12 -0.08 0.43 20 41.67% 43 5 

Between 
Simulations 

Dichotomous 2886 -0.01 -0.27 0.22 250 8.66% 1182 1704 

Poly (Stat) 161 0.09 -0.11 0.26 53 32.92% 133 28 

Poly (TBS) 64 0.12 -0.08 0.49 28 43.75% 58 6 

MCQ and Sims 
Dichotomous 21800 -0.04 -0.43 0.38 5150 23.62% 7480 14320 

Poly (Stat) 5200 -0.03 -0.35 0.35 1269 24.40% 1839 3361 

Poly (TBS) 4000 0.00 -0.47 0.48 932 23.30% 1939 2061 

Theta    
(Unanchored) 

Within 
Simulations 

Dichotomous 3030 0.06 -0.33 0.87 1082 35.71% 1798 1232 

Poly (Stat) 188 0.22 -0.12 0.76 125 66.49% 175 13 

Poly (TBS) 45 0.23 -0.07 0.75 32 71.11% 42 3 

Between 
Simulations 

Dichotomous 2886 -0.03 -0.24 0.21 332 11.50% 931 1955 

Poly (Stat) 161 0.06 -0.15 0.20 40 24.84% 120 41 

Poly (TBS) 54 0.12 -0.11 0.26 27 50.00% 50 4 

MCQ and Sims 
Dichotomous 21800 -0.02 -0.43 0.38 4576 20.99% 8701 13099 

Poly (Stat) 5200 -0.04 -0.35 0.30 1389 26.71% 1685 3515 

Poly (TBS) 3000 -0.03 -0.36 0.30 679 22.63% 1065 1935 

Thetas            
(Two-scales) 

Within 
Simulations 

Dichotomous 3030 0.05 -0.38 0.88 1103 36.40% 1715 1315 

Poly (Stat) 188 0.02 -0.30 0.71 77 40.96% 83 105 

Poly (TBS) 45 -0.02 -0.48 0.64 23 51.11% 16 29 

Between 
Simulations 

Dichotomous 2886 -0.01 -0.22 0.26 295 10.22% 1238 1648 

Poly (Stat) 161 -0.09 -0.29 0.20 53 32.92% 33 128 

Poly (TBS) 54 -0.13 -0.41 0.22 25 46.30% 11 43 

MCQ and Sims 
Dichotomous 21800 0.00 -0.32 0.38 3405 15.62% 11215 10585 

Poly (Stat) 5200 0.00 -0.29 0.36 834 16.04% 2598 2602 

Poly (TBS) 3000 0.00 -0.32 0.38 501 16.70% 1523 1477 
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Figure 1: Distribution of Q3 Statistics for exam section 1.   Note: The values of  Q3 for each item pair are 
plotted on the y axis, on the x-axis are the three scoring procedure employed—dichotomous, polytomous 
items grouped by statistical methods (stat poly) and expert constructed polytomous items (TBS poly).  Each 
row of panels shares a common conditioning variable—Theta(MCQ) for the ability estimate based only on 
MCQ items, Theta(Anchored)for the ability estimate based all items with simulation anchored to the MCA 
scale, Theta(Unanchored) for the ability estimate for all items, and Theta(Sims) for the separate scaling of the 
simulations and MCQ items.  Each column of panels represents one of the comparisons of interest—residual 
correlations for MO within a single simulation (Within Sims) ,  residual correlations between the MOs of  
simulations of a single panel (Between Sims), and residual correlations between MCQ items and simulations 
within a single panel (MCQ/Sims). 
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Figure 2: Distribution of Q3 Statistics for exam section 2. Note: The values of  Q3 for each item pair are 
plotted on the y axis, on the x-axis are the three scoring procedure employed—dichotomous, polytomous 
items grouped by statistical methods (stat poly) and expert constructed polytomous items (TBS poly).  Each 
row of panels shares a common conditioning variable—Theta(MCQ) for the ability estimate based only on 
MCQ items, Theta(Anchored)for the ability estimate based all items with simulation anchored to the MCA 
scale, Theta(Unanchored) for the ability estimate for all items, and Theta(Sims) for the separate scaling of the 
simulations and MCQ items.  Each column of panels represents one of the comparisons of interest—residual 
correlations for MO within a single simulation (Within Sims) ,  residual correlations between the MOs of  
simulations of a single panel (Between Sims), and residual correlations between MCQ items and simulations 
within a single panel (MCQ/Sims). 
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Figure 3: Distribution of Q3 Statistics for exam section 3. Note: The values of  Q3 for each item pair are 
plotted on the y axis, on the x-axis are the three scoring procedure employed—dichotomous, polytomous 
items grouped by statistical methods (stat poly) and expert constructed polytomous items (TBS poly).  Each 
row of panels shares a common conditioning variable—Theta(MCQ) for the ability estimate based only on 
MCQ items, Theta(Anchored)for the ability estimate based all items with simulation anchored to the MCA 
scale, Theta(No Anchor) for the ability estimate for all items, and Theta(Sims) for the separate scaling of the 
simulations and MCQ items.  Each column of panels represents one of the comparisons of interest—residual 
correlations for MO within a single simulation (Within Sims),  residual correlations between the MOs of  
simulations of a single panel (Between Sims), and residual correlations between MCQ items and simulations 
within a single panel (MCQ/Sims). 
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Comparison of scaling approaches 

Tables 2-3 and Figures 1-3 (shown earlier) were also used to compare competing scaling 
methods across all three scoring methods.  All of the unidimensional approaches to scaling 
produced positive mean Q3 correlations (see Tables 2-4).  In contrast, the separate scales 
approach (a pseudo-multidimensional method included in this study) produces mean Q3 that are 
closer to zero and slightly negative.   

Looking first at the unidimensional conditions (denoted ‘Theta(MCQ)’, ‘Theta(Anchored)’, & 
‘Theta(No Anchor)’ in Figures 1-3),  it is clear that, as the simulation responses contribute more 
to the estimation of ability, the dependencies decrease.  The θmcq is the cleanest unidimensional 
scaling condition.  This condition merely assumes that the MCQ items are measuring the same 
trait and are adequate to use as a conditioning variable for computing the residual statistics. 
However, this MCQ-only scaling method produces the highest mean Q3 correlation in the within- 
and between-simulation comparisons, indicating that the MCQ trait does not adequate explain 
responses to the simulation items.  A slight decrease in mean Q3   is observed in the θanchored 
condition. The underlying trait is still directionally determined by MCQ items, but the inclusion 
of simulation responses in the estimation of the final latent scores produces a conditioning 
variable that incorporates some of the measurement information present in the simulation 
responses.  The last unidimensional IRT conditioning score, θNo Anchor, is based on a simultaneous 
calibration of all of the simulation MOs and MCQ items.  Here, the underlying trait is not 
assumed to defined by solely the MCQ items, but is instead jointly determined by both item 
types.  As one might expect, this scaling condition produces the smallest mean Q3 of the three 
unidimensional scaling conditions.  This finding again suggests that there is multidimensionality 
present in the data, at least separable by item type. 

Even with the reductions in mean Q3 over the three unidimensional conditions, the mean Q3 in 
both the between-simulations and within-simulation comparisons is still convergent and sizeable.  
The separate scales condition (denoted as Theta(Sims) in Tables 2-3 and Figures 1-3) produces 
Q3 correlations that tend to be slightly negative5

                                                 
5 This divergent covariance is evidence that within the simulations items scale, the various items may appear to be 
distinct, each measuring at least in some part, something unique.  The two separate scales model is used as an 
illustration, but in reality a model that accounts for the uniqueness of the different simulation items (e.g. a testlet 
model or bi-factor model) may be more appropriate. 

 and closer to zero (on average) that the Q3 
values produced under the corresponding scoring conditions with unidimensional scaling of θ.  
This is additional, strong evidence that the simulations are likely measuring something distinct 
from the MCQ items.    
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Discussion 

Comparing Polytomous and Dichotomous Scoring 

Overall, dichotomous scoring produces average residual correlations that are closer to zero.  On 
the surface, this would suggest that polytomous scoring does little to reduce LID. That finding is 
counter-intuitive and somewhat contradicts other research.  However, it is also important to 
consider not just the location of the Q3 distribution, but also the range and variance of these 
correlations when comparing scoring methods.  Dichotomous score produces a much more 
varied set of correlations and a great number of item pairs with extreme dependencies.  The 
reduced range and reduced number of large dependency indicators produced under polytomous 
score within a particular simulation suggest that, while not eliminating non-zero covariance, 
polytomous scoring IS effective in controlling some of the extreme dependencies likely due to 
contextual and scoring issues.  The similar amounts of residual covariance in the within-
simulation and between-simulation (which has no contextual dependencies) comparisons further 
suggest that the amount of residual covariance after scoring polytomously may be largely due to 
issues of dimensionality. 

TBS and Statistically Grouped Simulation  

The results indicate that statically group polytomous simulations and TBS grouped items 
perform similarly (with perhaps a slight advantage to statically grouped polytomous score units).  
The process of creating statistically group is based solely on the empirical response to the 
simulation items, which could be highly variable in different panels that contain the same 
simulations.  The result is a grouping that works locally, but is not stable across panels or time.  
Tab-based simulations are more stable over time, given their logical clustering basis as coded by 
SMEs.   Because the TBS-grouped polytomous scoring performed about as well as the 
statistically grouped polytomous items, TBS may provide a promising method for creating 
smaller simulations (either scored dichotomously or clustered into polytomous items for 
scoring). From a test development perspective, the TBS approach to scoring represents a 
proactive process that identifies the particular skills that need to be measured by the simulations, 
and designing items that assess the skills.  Though considerable research must still be done on 
TBS scoring , this study provides some preliminary evidence to suggest that a cognitively based 
process for creating complex performance assessment might be successful from an operational 
perspective.    

Comparing Scaling Methods  

 The results in the comparison of the scaling comparison strongly suggest that the simulations 
and MCQ section constitute distinct scales.  While the combination of polytomous scoring and 
separate scaling produced the most optimal residual covariance matrix (located near zero with a 
very limited range of dependencies), separate scaling was also a great benefit to the 
dichotomously scored simulations.  The benefits of separate scaling in terms of conditional 
covariance and assumptions of local independence are clear, but such a move would require 
careful consideration.  
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Separate scaling would require that validation evidence must be produced for both scales.  For 
the long existing MCQ section, this is not problematic, but a newly formed simulation scale 
would require more attention.  A simulation “trait” would have to carefully defined, and 
represented within each panel of each sub-examination.  The current work with tab-based 
simulations might prove effective in accomplishing this task.  In a two-scale test, a decision on 
how many scores to report would have to be considered.  If a single score would be reported 
and/or used to make pass/fail decisions, the method for creating a composite is non-trivial and 
must be carefully considered. Operational practices and procedures would also have to be 
considered (equating, item-banking, etc.).  
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